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Abstract
We present here a generalization of the recursion method of Haydock et al (1972
J. Phys. C: Solid State Phys. 5 2845) for the calculation of Green matrices (in
angular momentum space). Earlier approaches concentrated on the diagonal
elements, since the focus was on spectral densities. However, calculations of
configuration averaged response functions or neutron scattering cross-sections
require the entire Green matrices and self-energy matrices obtained from them.
This necessitated the generalization of the recursion method presented here,
with examples.

1. Introduction

Augmented space recursion carried out in a minimal basis set representation of the tight-
binding linear muffin-tin orbitals method (TB-LMTO-ASR) has been proposed earlier by
us [2, 3] as a technique for the incorporation of the effects of configuration fluctuations for
random substitutionally disordered alloys. This can be achieved without the usual problems
of violation of the Herglotz analytic properties1 of the approximated configuration averaged
Green functions for the Schrödinger equation for these random alloys. Although our initial
focus was on configuration averages of the density of states and spectral functions, recently
we have proposed using the TB-LMTO-ASR for the study of configuration averaged optical
conductivities [4] or coherent and incoherent neutron scattering cross-sections [5]. These
calculations require the full Green matrices in angular momentum space and not only their
diagonal elements. We propose here the use of a generalization of the recursion method of
Haydock et al [1]. The block recursion technique had been introduced earlier by Godin and
Haydock [6, 7] in the very different context for obtaining the scattering S-matrix for finite

1 A function of a complex variable f (z) is called Herglotz if: all singularities of f (z) lie on the real z axis and
Im f (z) = −sgn(Im z) for all z off the real axis.
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scatterers attached to perfect leads. The block recursion has been discussed in a general
context by Nex [8] and Haydock et al [9]. Earlier, Inoue and Ohta [10] had proposed the
use of an orbital symmetrized version of the block recursion method for electronic structure
calculations. We shall borrow their ideas and set up a block recursion in angular momentum
space (rather than the lead space, as in Godin and Haydock’s work) in order to obtain the Green
matrices (in angular momentum space) directly. Unlike in the earlier works, the application
will be to configuration averages in random alloys.

2. Methodology

2.1. The TB-LMTO Hamiltonian in augmented space and the recursion method

The augmented space recursion based on the tight-binding linear muffin-tin orbitals method
(TB-LMTO-ASR) has been described thoroughly in a series of articles [11–19]. We shall
introduce the salient features of the ASR which will be required by us in our subsequent
discussions.

We shall start from first-principles tight-binding linear muffin-tin orbitals (TB-
LMTO) [20, 21] in the most localized representation (α representation). This is necessary,
because the subsequent recursion requires a sparse representation of the Hamiltonian. In this
representation, the second-order alloy Hamiltonian is given by

H(2) = Eν + h − hoh

where

h =
∑

R

(CR − EνR)PR +
∑

R

∑
R′

∆1/2
R SR R′∆1/2

R′ TR R′

o =
∑

R

oRPR

(1)

CR , EνR , ∆R and oR are diagonal matrices in angular momentum space:

CR = CRLδL L ′ EνR = EνRLδL L ′

∆R = �RLδL L ′ and oR = oRLδL L ′

and SR R′ = SRL ,R′ L ′ is a matrix of rank Lmax. PR = |R〉〈R| and TR R′ = |R〉〈R′ | are projection
and transfer operators in the Hilbert space H spanned by the tight-binding basis {|R〉}. Here,
R relates to the position of atoms in the solid and L is a composite label {�,m,ms} for the
angular momentum quantum numbers. C, ∆ and the o’s are potential parameters of the TB-
LMTO method; these are diagonal matrices in the angular momentum indices, o−1 has the
dimension of energy and the Eν’s are the energy windows about which the muffin-tin orbitals
are linearized.

For a disordered binary alloy we may write

CRL = CA
L nR + CB

L (1 − nR)

�
1/2
RL = (

�A
L

)1/2
nR +

(
�B

L

)1/2
(1 − nR)

oRL = oA
L nR + oB

L(1 − nR).

(2)

Here {nR} are the random site-occupation variables which take values 1 and 0 depending upon
whether the muffin tin labelled by R is occupied by an A or B type of atom. The atom sitting at
{R} can be either of type A (nR = 1)with probability x or of type B (nR = 0)with probability
y. The augmented space formalism (ASF) now introduces the space of configurations of the
set of binary random variables {nR} : �.
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In the absence of short ranged order, each random variable nR has associated with it an
operator MR whose spectral density is its probability density:

p(nR) = xδ(nR − 1) + yδ(nR)

= − 1

π
lim
δ→0

Im〈↑R | [(nR + iδ)I − MR]−1 |↑R〉 (3)

where MR is an operator whose eigenvalues 1, 0 correspond to the observed values of nR and
whose corresponding eigenvectors {|1R〉, |0R〉} span a configuration space φR of rank 2. We
may change the basis to {|↑R〉, |↓R〉}:

|↑R〉 = √
x |0R〉 +

√
y|1R〉

|↓R〉 = √
y|0R〉 − √

x |1R〉
and in this new basis the operator is

nR → MR = xP↑
R + yP↓

R +
√

xy(T ↑↓
R + T ↓↑

R ). (4)

These two vectors span the spaceφR . The full configuration space� = ∏⊗
R φR is then spanned

by vectors of the form |↑ ↑↓↑↓ · · ·〉. These configurations may be labelled by the sequence of
sites {C} at which we have a ↓. For example, for the state just quoted {C} = |{3, 5, . . .}〉. This
sequence is called the cardinality sequence. If we define the configuration |↑ ↑ · · · ↑ · · ·〉 as the
average or reference configuration, then the cardinality sequence of the reference configuration
is the null sequence {∅}.

The augmented space theorem [11] states that

〈〈A({nR})〉〉 = 〈{∅}|Ã|{∅}〉 (5)

where

Ã({MR}) =
∫

· · ·
∫

A({λR})
∏

dP (λR).

P(λR) is the spectral density of the self-adjoint operator MR .
Applying this idea we may obtain exact expressions for configuration averages of Green

matrices (in angular momentum space) both in the real and reciprocal space representations:

〈〈G(R, R, z)〉〉 = 〈R ⊗ {∅}|(zĨ − H̃(2))
−1|R ⊗ {∅}〉 (6)

〈〈G(k, z)〉〉 = 〈k ⊗ {∅}|(zĨ − H̃(2))
−1|k ⊗ {∅}〉 (7)

where G and H(2) are operators which are matrices in angular momentum space, and the
augmented k-space basis |k, L ⊗ {∅}〉 has the form

(1/
√

N )
∑

R

exp(−ik · R)|R, L ⊗ {∅}〉.

The augmented space Hamiltonian H̃(2) is constructed from the TB-LMTO Hamiltonian
H(2) by replacing each random variable nR by operators MR . It is an operator in the augmented
space 
 = H ⊗ �. The ASF maps a disordered Hamiltonian described in a Hilbert space
H onto an ordered Hamiltonian in an enlarged space 
 , where the space 
 is constructed as
the outer product of the space H and configuration space � of the random variables of the
disordered Hamiltonian. The configuration space � is of rank 2N if there are N muffin-tin
spheres in the system. Another way of looking at H̃(2) is to note that it is the collection of all
possible Hamiltonians for all possible configurations of the system.

A little mathematics yields the following:

〈〈G(z)〉〉 = 〈1|(Ã + B̃ + F̃ − S̃ + (J̃ + S̃)õ(J̃ + S̃))−1|1〉. (8)
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For real space calculations,

|1〉 = A(∆−1/2)

[A(∆−1)]1/2
|R ⊗ {∅}〉 +

F(∆−1/2)

[A(∆−1)]1/2
|R ⊗ {R}〉,

and for reciprocal space calculations,

|1̂〉 = A(∆−1/2)

[A(∆−1)]1/2
|k ⊗ {∅}〉 +

F(∆−1/2)

[A(∆−1)]1/2
|k ⊗ {R}〉,

where

K̃ =
∑

R

{
K

(
(zI − C)∆−1) /A(∆−1)

}
OK

and K may be A, B or F, while the operators

OA = PR ⊗ I OB = PR ⊗ P↓
R OF = PR ⊗

{
T ↑↓

R + T ↓↑
R

}
.

Moreover, J̃ = J̃A + J̃B + J̃F and õ = õA + õB + õF where

J̃K =
∑

R

{
K

(
(C − Eν)∆−1

)
/A(∆−1)

}
OK

õK =
∑

R

{
K(o∆)A(∆−1)

}
OK .

(9)

For any diagonal (in angular momentum space) operator V,

A(V) = (xV A
L + yV B

L )δL L ′,

B(V) = (y − x)(V A
L − V B

L )δL L ′,

F(V) = √
xy(V A

L − V B
L )δL L ′ .

In the case where is no off-diagonal disorder due to local lattice distortion because of size
mismatch,

S̃ =
∑

R

∑
R′

A(∆−1)−1/2SR R′ A(∆−1)−1/2TR R′ ⊗ I.

Equation (8) is now exactly in the form for which the recursion method may be applied.
For ordinary recursion, |1〉 is labelled by a particular L and has a representation as a 1 × Nmax

column vector, with Nmax being the size in augmented space. But in the case of block recursion,
we deal with an L × L ′ matrix and the length of |1〉 is L × L ′ × Nmax. We should note that at
this point the above expression for the averaged 〈〈G RL ,RL ′ (z)〉〉 or 〈〈GL L ′(k, z)〉〉 is exact.

It is important to note that the operators Ã, B̃, F̃, J̃A, J̃B, J̃F , õA, õB and õF are all
projection operators in real space (i.e. unit operators in k-space) and act on an augmented
space basis only to change the configuration part (i.e. the cardinality sequence {C}):
Ã||{C}〉 = A1||{C}〉 B̃||{C}〉 = A2||{C}〉δ(R ∈ {C}) F̃||{C}〉 = A3||{C ± R}〉
J̃A||{C}〉 = J1||{C}〉 J̃B||{C}〉 = J2||{C}〉δ(R ∈ {C}) J̃F ||{C}〉 = J3||{C ± R}〉
õA||{C}〉 = o1||{C}〉 õB||{C}〉 = o2||{C}〉δ(R ∈ {C}) õF ||{C}〉 = o3||{C ± R}〉.

The coefficients A1–A3, J1–J3 and o1–o3 have been expressed in equation (9). The
remaining operator S̃ is off-diagonal in real space, but diagonal in k-space.

In the real space representation,

S̃|R, {C}〉 =
∑
χ

S(χ)|R + χ, {C}〉.

Here the χ’s are the nearest neighbour vectors. The operator S̃ shifts the real space site to
its nearest neighbour position by the vector χ and configuration space remains unchanged.
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However, in the reciprocal space representation, it acts on an augmented space only to change
the configuration part:

S̃||{C}〉 =
∑
χ

exp (−ik · χ)S(χ)||{C − χ}〉.

Here the operator rigidly shifts the entire down-spin configuration by the vector χ . The
operation of the effective Hamiltonian is thus entirely in the configuration space.

As long as we wish to obtain only the diagonal elements of the Green function, as is
required for the local density of states or the spectral densities, the ordinary recursion as
described by Haydock et al [1] suffices. However, for response functions we shall need the
full Green matrix. This will be described in the following section.

2.2. The configuration averaged current–current correlation function

We shall quote here the result for the dominant term in the configuration averaged current–
current correlation function reported by us earlier [4]. This correlation function is directly
related to the optical conductivity. We note that the expression involves the full Green matrix
in angular momentum space and not only its diagonal elements.

The expression for the correlation function is

〈〈S(z1, z2)〉〉 =
∫

BZ

d3k
8π3

Tr
[
Jeff(k, z1, z2)〈〈Gv(k, z1)〉〉Jeff(k, z1, z2)

†〈〈Gc(k, z2)〉〉
]

(10)

and the renormalized current term is given by

Jeff(k, z1, z2) = 〈〈j(k)〉〉 + 2
[
Σ(k, z2)f(z2)j(1)(k) + j(1)(k)f(z1)�(k, z1)

]
+ �(k, z2)f(z2)j(2)(k)f(z1)�(k, z1) (11)

where

f(z) = fL L ′(z) =
〈

1

�L

〉 [
CA

L

�A
L

− CB
L

�B
L

− z

(
1

�A
L

− 1

�B
L

)]−1

δL L ′

and

Σ = g−1 − G−1.

g is the virtual crystal Green function. The interested reader is referred to an earlier work [4]
which derives these expressions in some detail. The main point in setting these equations out
is to note that in such calculations one needs the full Green matrix in angular momentum space.
This is the main motivation for this work.

2.3. Setting up the block recursion

The first step in setting up the block recursion procedure is to systematically renumber the real
space basis with integers. An example on a square lattice is shown in figure 1.

The nearest neighbour map is now generated by a systematic numbering of the states in
augmented space as follows.

(A) Real space formulation. We start with numbering |R, {∅}〉 as 1, and then recursively
generate the neighbours by acting on the states with S̃ and F̃. Let us take an example of a
square lattice:

(i) S̃ acting on |1, {∅}〉 ≡ |1〉 gives four new neighbours |2, {∅}〉 · · · |5, {∅}〉. The four real
space neighbours of |1〉 are then |2〉, |3〉, |4〉 and |5〉.
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Figure 1. Systematic discrete numbering of the nearest neighbour map on a square lattice.

(ii) F̃ acting on |1, {∅}〉 ≡ |1〉 gives |1, {1}〉. This we number |6〉.
(iii) S̃ acting on |2, {∅}〉 ≡ |2〉 gives |6, {∅}〉, |7, {∅}〉, |1, {∅}〉 and |8, {∅}〉. These we number

|7〉, |8〉, |1〉 and |9〉.
(iv) F̃ acting on |2, {∅}〉 ≡ |2〉 gives |2, {2}〉 ≡ |10〉.

We proceed exactly as above and finally obtain the nearest neighbour map matrix, the nth
column of whose mth row gives the nth neighbour of m. We show below the initial part of the
nearest neighbour map for the above example:


2 3 4 5 6
7 8 1 9 10
8 11 12 1 13
· · · · · · · · · · · · · · ·


 .

The equivalences are:

Augmented space element ⇒ 1{∅ } 2{∅ } 3{∅ } 4{∅ } 5{∅ } 1{1} 6{∅ }
Discrete numbering ⇒ 1 2 3 4 5 6 7

Augmented space element ⇒ 7{∅ } 8{∅ } 2{2} 9{∅ } 10{∅ } 3{3}
Discrete numbering ⇒ 8 9 10 11 12 13.

(B) Reciprocal space formulation. In reciprocal space the procedure is even simpler, since
the operators act only on the configuration part of the space. As before, we start by numbering
|k, {∅}〉 as 1 and then recursively generate the neighbours by acting on the states successively
with S̃ and F̃. Let us take the example of the square lattice:

(i) S̃ acting on |{∅}〉 ≡ |1〉 leaves it unchanged. The four neighbours of |1〉 are then |1〉, |1〉,
|1〉 and |1〉.

(ii) F̃ acting on |{∅}〉 ≡ |1〉 gives |{1}〉. This we number |2〉.
(iii) S̃ acting on |{1}〉 ≡ |2〉 gives |{2}〉, |{3}〉, |{4}〉 and |{5}〉. These we number |3〉, |4〉, |5〉

and |6〉.
(iv) F̃ acting on |{1}〉 ≡ |2〉 gives |{∅}〉 ≡ |1〉.

We proceed as before and obtain the nearest neighbour map matrix. We again show below
the initial part of the nearest neighbour map in reciprocal space:


1 1 1 1 2
3 4 5 6 1
7 8 2 9 10
· · · · · · · · · · · · · · ·


 .
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Now the equivalences are:

Cardinality sequence ⇒ {∅ } {1} {2} {3} {4} {5} {6} {7} {8} {1, 2}
Discrete numbering ⇒ 1 2 3 4 5 6 7 8 9 10.

(C) The block recursion. We now go over to a matrix basis of the form {�(n)
J,L L ′ }, where J

is the discrete labelling of the augmented space states and L, L ′ labels the angular momenta.
The inner product of such a basis is defined by(

�(n),�(m)
) =

∑
J

∑
L ′′
�
(n)†
L L ′′,J�

(m)
J,L ′′L ′ = Nnm

L L ′ .

For a real space calculations on a lattice with Z nearest neighbours, we start the recursion
with

�
(1)
J,L L ′ = W(1)

L L ′δJ,1 + W(2)
L L ′δJ,Z+1,

while for a reciprocal space calculation we start with

�
(1)
J,L L ′ = W(1)

L L ′δJ,1 + W(2)
L L ′δJ,2,

where

W(1)
L L ′ = A(�−1/2

L )[
A(�−1

L )
]1/2 δL L ′ W(2)

L L ′ = F(�−1/2
L )[

A(�−1
L )

]1/2 δL L ′ . (12)

The remaining terms in the basis are recursively obtained from∑
L ′′
�
(2)
J,L L ′′B

(2)†
L ′′ L ′ =

∑
J ′

∑
L ′′

HJ L ,J ′L ′′�
(1)
J ′,L ′′ L ′ −

∑
L ′′
�
(1)
J,L L ′′A

(1)
L ′′L ′

∑
L ′′
�
(n+1)
J,L L ′′B

(n+1)†
L ′′ L ′ =

∑
J ′

∑
L ′′

HJ L ,J ′L ′′�
(n)
J ′,L ′′ L ′ −

∑
L ′′
�
(n)
J,L L ′′A

(n)
L ′′L ′ −

∑
L ′′
�
(n−1)
J,L L ′′B

(n)
L ′′ L ′ .

Orthogonalization of the basis gives∑
J

∑
L ′′

∑
J ′

∑
L ′′′
�
(n)†
L L ′′,J HJ L ′′,J ′L ′′′�

(n)
J ′,L ′′′ L ′ =

∑
L ′′

Nnn
L L ′′ A(n)

L ′′L ′ . (13)

In matrix notation, where the matrices are in angular momentum space,

A(n) = (
Nnn

)−1 ∑
J

∑
J ′

Φ(n)†
J HJ J ′Φ(n)

J ′ . (14)

Next, we note that we started with Jmax × L2
max orthogonal basis set. The above procedure

merely gives Jmax basis sets. We still have orthogonality conditions among the various columns
of �(n)

J,L L ′ . In order to impose these conditions, consider


J,L L ′ =
∑

J ′

∑
L ′′

HJ L ,J ′L ′′�
(n)
J ′,L ′′ L ′ −

∑
L ′′
�
(n)
J,L L ′′A

(n)
L ′′ L ′ −

∑
L ′′
�
(n−1)
J,L L ′′B

(n)
L ′′ L ′ .

Construct Lmax column vectors φ(L
′)

J L out of the Lmax columns of 
J,L L ′ and set about
Gram–Schmidt orthonormalizing the set:

φ
(1)
L J = B11ψ

(1)
L J ⇒ B2

11 =
∑
L J

φ
(1)
J Lφ

(1)
L J

φ
(2)
L J = B21ψ

(1)
L J + B22ψ

(2)
L J ⇒ B21 =

∑
L J

ψ
(1)
J Lφ

(2)
L J ; B2

22 =
∑
L J

φ
(1)
J Lφ

(1)
L J − B2

21

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
φ
(n)
J L =

n∑
k=1

Bnkφ
(k)
L J ⇒ Bnk =

∑
L J

ψ
(k)
J Lφ

(n)
L J (k < n); B2

nn =
∑
L J

φ
(n)
J Lφ

(n)
L J −

n−1∑
k=1

B2
nk .

(15)
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Figure 2. The real and imaginary parts of the Green matrix for a 2 × 2 Hamiltonian model. The
full curves relate to G11, the dashed–dotted curve to G22 and dashed curves to G12.

We may now construct�(n+1)
J,L L ′ fromψL ′

J L and note that Bnk is indeed the matrix B(n+1) that
we are looking for.

Equations (14) and (15) show that we may calculate the matrices {A(n),B(n+1)} recursively,
noting that B(1) = I and B(0) = 0. In this new basis, the Hamiltonian is block tri-diagonal and
the Green matrix can be written as follows:

G(n) = [
EI − A(n) − B(n+1)†G(n+1)B(n+1)]−1

〈〈G〉〉 = G(1).
(16)

3. Model calculations

(A) The model on a square lattice. We shall first apply our methodology to a two-band model
on a square lattice with the Hamiltonian

H A =
∑

R

(
1.0 0.0
0.0 1.0

)
PR +

∑
R

∑
R′

( −2.0 −0.2
−0.2 −0.5

)
TR R′

H B =
∑

R

(
0.1 0.0
0.0 0.1

)
PR +

∑
R

∑
R′

( −2.0 −0.2
−0.2 −0.5

)
TR R′ .

(17)

The concentration is taken to be x = 0.5.
We have carried out block recursion for N = 10 levels. The termination was carried out

as suggested earlier by Godin and Haydock [7]: we put {A(n),B(n+1)} = {A(N),B(N+1)} for
n = N + 1, . . . , Nmax and take G(Nmax+1) = (1/(E − iδ)) I. In order to get a smooth density
of states we had taken δ = 0.01 and Nmax = 10 000. The elements of the Green matrix are
shown in figure 2. The imaginary parts of the diagonal elements give the projected density of
states. Herglotz properties of the diagonal parts give rise to a positive definite density of states.
The off-diagonal part is relatively small and is not Herglotz. The projected density of states is
symmetric, as is the imaginary part of the off-diagonal element. The real parts of the matrix
elements are also shown. These are related to the imaginary parts by the Kramers–Krönig
relation.

(B) The s–d model of a transition metal–noble metal alloy. Levin and Ehrenreich [22]
and Gelatt and Ehrenreich [23] have introduced a simple two-band model for transition metal–
noble metal alloys. Physical effects such as charge transfer between constituents will usually
differ for the s–p conduction bands on one hand and the relatively narrow d bands on the other.
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Figure 3. The real and imaginary parts of the Green matrix for the s–d model on a fcc lattice.
The calculations were done by a real space block recursion. The full curves relate to G11, the
dashed–dotted curve to G22 and dashed curves to G12.

Table 1. Parameters for our calculation for an A50B50 alloy on a fcc lattice.

Constituent εs εd γ α td

A 1.5 1.5 0.2 4.0 −0.5
B 0.0 0.0 0.2 4.0 −0.5

Their model includes the conduction bands described together as a single band and the set of
d bands also described as a single band and their hybridization. The model also takes into
account the large widths of the conduction bands and the relatively narrow widths of the d
bands. The following Hamiltonian has many (but not all) of the essential features:

H =
∑

R

(
εs γ

γ εd

)
PR +

∑
R

∑
R′

(
ts 0
0 td

)
TR R′ . (18)

The dominant disorder is taken to be in the terms εs and εd. The hybridization is taken
between states at the same site only and the hopping terms are related by ts = αtd. The sites R
vary over the sites of a face-centred cubic lattice. As a model case we have taken the parameters
shown in table 1.

(i) Calculations using real space block recursion. Figure 3 shows the real and imaginary
parts of the Green matrix. These calculations were carried out through a real space block
recursion technique. In general the qualitative features for the diagonal elements are similar
to those of our square lattice model. The main difference is that on a fcc lattice the partial
densities of states, related to the imaginary parts of the diagonal elements of the Green matrix,
are no longer symmetric about the band centre. Consequently, the behaviour of the off-diagonal
element is quite different. The total density of states is given by

n(E) = (1/π) Im(Gss(E − iδ) + 5Gdd(E − iδ)).

If, for example, the number of electrons in the constituents is 5 per atom per spin for A and
5.5 per atom per spin for B, the position of the Fermi energy is given by∫ EF

−∞
dE n(E) = 〈ne〉 = xnA + (1 − x)nB = 5.25

where nA and nB are the numbers of valence electrons of the A and B types of atom.
(ii) Calculations using reciprocal space block recursion. We have carried out the block

recursion in reciprocal space for the s–d model. The Green matrix in reciprocal space G(k, E)
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Figure 4. The matrix elements of G(k, E) on a fcc lattice: the 11 element (left), the 22 element
(middle) and the 12 element (right) along the � to X direction.
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Figure 5. The real and imaginary parts of the Green matrix for the s–d model on a fcc lattice. The
calculations are done by a k-space block recursion followed by a reciprocal space integration [25].
The full curves relate to G11, the dashed–dotted curve to G22 and dashed curves to G12.

is the factor that arises in our earlier expression for the configuration averaged current–current
correlation function. Its diagonal matrix element is related to the spectral functions for the
different bands. In figure 4 we show the spectral functions along a given direction �–X in
reciprocal space. The imaginary part of the off-diagonal matrix element is also shown in the
figure. We note that the off-diagonal part of the Green matrix has antisymmetric structure in its
peaks, while the diagonal matrix elements are positive (as they represent spectral functions).

Figure 5 shows the Green matrix elements calculated starting from the G(k, E) and
carrying out a reciprocal space integration developed by us [25] as a generalization of the
tetrahedron method proposed by Jepsen and Andersen [24] for crystalline systems. The close
comparison between figures 3 and 5 gives strong support for the accuracy of the reciprocal
space recursion.

4. Optical conductivity of Ni50Pt50 alloy

We shall now report a calculation of the optical conductivity of a 50–50 NiPt alloy. The
initial electronic structure calculations require input of the potential parameters for pure Ni
and Pt. These we have taken from a TB-LMTO calculation on the pure materials. We use
these as input for a self-consistent calculation of the electronic structure using our LDA self-
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Figure 6. The imaginary and real parts of (1/9)Tr GL L (k, E) (left column) and the imaginary and
real parts of GL L′ (E) (right column) for Ni50Pt50 alloy.
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Figure 7. The density of states for a 50–50 NiPt alloy. The dashed line shows the Fermi energy.

consistent augmented space recursion technique (ASR). We first calculate the Green matrix
in reciprocal space. The results are shown in figure 6. The imaginary parts of the diagonal
elements yield the spectral functions. Figure 6 also shows the off-diagonal matrix elements.
Most of these elements are very small as compared with the spectral functions and are not
positive definite as expected. The density of states for the alloy is shown in figure 7. We obtain
the density of states by integrating the spectral function over the Brillouin zone, using the
tetrahedron method generalized for disordered alloys by us [25]. The density of states for NiPt
is particularly difficult to reproduce accurately by real space recursion, because of the sharp
structure straddling the Fermi energy. However, the calculation in reciprocal space followed
by Brilluoin zone integration reproduces the density of states in very good agreement with
earlier work using KKR-CPA [26].

The calculation of the optical conductivity involves the calculation of the four current
terms jAA, jAB, jBA and jBB. Ideally one should calculate these for two atoms of the type AA,
AB, BA or BB embedded in the disordered alloy. However, as a first approximation we have
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Figure 8. The joint density of states J (ω) (dashed curve) and the correlation function S(ω) (solid
curve) for 50–50 NiPt alloys.

obtained these for the pure metals and the ordered alloy. Having obtained the current terms
we use the scattering methodology described in [4] to obtain the correlation function.

In figure 8 we show the result for the correlation function (full curves) for a 50–50 NiPt
alloy:

S(ω) = 1
4

∫
dE1

[
S(E+

1 , E+
2 ) + S(E−

1 , E−
2 )− S(E+

1 , E−
2 )− S(E−

1 , E+
2 )

]
.

where E2 = E1 + ω, E± = E ± i0+. For comparison we have also shown (as dashed curves)
the joint density of states for the same alloy:

J (ω) =
∫

dE nv(E)nc(E + ω).

The former calculation requires the full Green matrices as well as the full matrix self-energies
(matrices in the angular momentum space). We have carried out the calculations of these
matrices via our block recursion technique. The joint density of states is modulated by the
current terms. The main structures of the joint density of states are retained in the correlation
function, but the relative heights of the principal peaks are modified.

5. Conclusion

In this communication we have described a block recursion in augmented space suitable for
calculations of the Green matrices. The recursion is set up both with real space augmented by
the configuration space of the alloy and the reciprocal space augmented with the configuration
space. For the latter case we have coupled it with a Brillouin zone integration scheme which
is a generalization of the tetrahedron method developed earlier for crystalline systems. The
Green matrices are essential for the calculation of the response functions and effective current
terms which are related to the self-energy matrices. We propose to use these techniques in our
future applications.
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